Continuity in expectation of odd random attractors for stochastic Kuramoto-Sivashinsky equations
نویسندگان
چکیده
We consider the stochastic non-autonomous Kuramoto-Sivashinsky equation with multiplicative white noise and colored coefficients. Due to anti-dissipative term in equation, we restrict state space on Lebesgue of odd functions then obtain a pullback random attractor $ \mathcal{A} space, where special bridge function plays an crucial role priori estimate. Moreover, prove continuity expectation for set-valued mapping (t ,s) \to \mathcal{A}(t,\theta_s\omega ) respect Hausdorff metric establish residual dense pathwise sense. In application, verify four conditions including joint dynamical system, union closedness tempered universe, local compactness boundedness attractor.
منابع مشابه
On the Stochastic Kuramoto-Sivashinsky Equation
In this article we study the solution of the Kuramoto–Sivashinsky equation on a bounded interval subject to a random forcing term. We show that a unique solution to the equation exists for all time and depends continuously on the initial data.
متن کاملBackward Difference Formulae for Kuramoto–sivashinsky Type Equations∗
We analyze the discretization of the periodic initial value problem for Kuramoto–Sivashinsky type equations with Burgers nonlinearity by implicit– explicit backward difference formula (BDF) methods, establish stability and derive optimal order error estimates. We also study discretization in space by spectral methods.
متن کاملOptimal Parameter-dependent Bounds for Kuramoto-sivashinsky-type Equations
We derive a priori estimates on the absorbing ball in L2 for the stabilized and destabilized Kuramoto-Sivashinsky (KS) equations, and for a sixth-order analog, the Nikolaevskiy equation, and in each case obtain bounds whose parameter dependence is demonstrably optimal. This is done by extending a Lyapunov function construction developed by Bronski and Gambill (Nonlinearity 19, 2023–2039 (2006))...
متن کاملRigorous Numerics for Partial Differential Equations: The Kuramoto-Sivashinsky Equation
We present a new topological method for the study of the dynamics of dissipative PDE’s. The method is based on the concept of the selfconsistent apriori bounds, which allows to justify rigorously the Galerkin projection. As a result we obtain a low-dimensional system of ODE’s subject to rigorously controlled small perturbation from the neglected modes. To this ODE’s we apply the Conley index to...
متن کاملData-based stochastic model reduction for the Kuramoto–Sivashinsky equation
The problem of constructing data-based, predictive, reduced models for the KuramotoSivashinsky equation is considered, under circumstances where one has observation data only for a small subset of the dynamical variables. Accurate prediction is achieved by developing a discrete-time stochastic reduced system, based on a NARMAX (Nonlinear Autoregressive Moving Average with eXogenous input) repre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B
سال: 2023
ISSN: ['1531-3492', '1553-524X']
DOI: https://doi.org/10.3934/dcdsb.2023125